떡밥위키
최근 변경
최근 토론
특수 기능
파일 올리기
작성이 필요한 문서
고립된 문서
고립된 분류
분류가 되지 않은 문서
편집된 지 오래된 문서
내용이 짧은 문서
내용이 긴 문서
차단 내역
RandomPage
라이선스
IP 사용자
216.73.216.107
설정
다크 모드로 전환
로그인
서버 점검 공지
|
개인정보 처리방침 개정 안내
베르누이 정리
(r2 문단 편집)
닫기
RAW 편집
미리보기
== 설명 == 이해를 위해서는 에너지 보존이라고 생각해도 무방하나, 엄밀히는 뉴턴의 제2법칙의 변형이라 보는 것이 정확하다.[* [[나비에-스토크스 방정식]]도 결국은 뉴턴의 제2법칙으로 환원되고, 일반화된 베르누이 정리의 유도는 나비에-스토크스 방정식에서 출발함을 떠올려보면 이는 자명하다.] 하지만, 유도된 형태는 에너지 보존 법칙과 동일한 형태를 갖는데, 이는 비압축성 유동의 경우 에너지 방정식이 운동량 방정식과 분리(decoupled)되면서, 운동량 방정식의 해는 에너지 방정식의 해를 자연히 만족한다는 사실에서 기인한다.[* 비압축성 유동의 경우 에너지 방정식은 온도에 관한 방정식과 운동에너지에 관한 방정식으로 나누어질 수 있고, 여기서 비점성 유동을 가정하면 운동에너지에 관한 방정식은 운동량 방정식과 속도의 내적과 동치임을 보일 수 있다. 즉, 운동량 방정식의 해는 운동에너지 방정식의 자명한 해다.] 이는 상당히 중요한 사실인데, 왜냐하면 근본적으로 운동량 보존과 에너지 보존은 별개의 법칙이기 때문이다. 뉴턴의 제2법칙을 속도 형태로 변형한 뒤 중력장에서 적분하면 운동에너지와 위치에너지의 합이 보존됨을 보일 수 있지만, 이것이 에너지 보존법칙 자체의 증명과는 별개인 것과 같은 이치다. 일상적인 예로 바람이 많이 부는 날 창문이 살짝 열려 있으면 바람이 쌩쌩 소리를 내며 들어오는 것이 있다. 빨리 달리는 차에 앉아서 창문을 열면 휴지나 비닐봉지들이 정신없이 날라다니며 결국 바깥으로 탈출하는 경우도 여기에 해당되고, 바깥의 넓은 공간에서 좁은 창문 통로를 지나면 압력 차이가 생기고 속력이 증가하여 바람이 빨리 들어와서 바람이 쌩쌩 들어오는 것이다. 또 다른 예로, 바람이 많이 부는 날 문이 열려 있을 때 문이 저절로 세게 닫히게 되는 것이 있다. 문이 닫히기 시작하면 계속 압력 차이가 심해지고 공기의 속력은 빨라지므로 더더욱 문이 닫히는 쪽으로 공기가 흐르게 되므로 문의 속력이 빨라지다가 닫힐 때 문 틀과 세게 부딪히며 큰 소리를 내는 것이다. 하지만 [[유체역학]]을 공부하면 모든 경우에 대해 베르누이의 정리가 성립하는 것은 아니라는 사실을 알 수 있다. 베르누이의 정리는 점성이 없는 유체(inviscid flow)에서만 성립하며[* 역학적 에너지 보존의 법칙이 마찰이 있는 경우에 성립하지 않는 것과 비슷한 이유이다.], 유체가 비회전성(irrotational)인 경우가 아니라면 동일한 유선(streamline)상에서만 성립하는 정리이다. 한편, 압축성(compressible) 유체의 경우에는 공식이 위의 식과는 약간 달라진다. 다만, 공기역학 분야에서 유체를 비점성으로 가정하고 대략적 특성을 알아보거나 하는 경우가 있는데, 이럴 때 베르누이의 정리가 현실에서도 유용하게 사용될 수 있다. 어떤 가정을 하든 생략할 수 없는 조건은 '외력이 가해지지 않을 것'이라는 전제다. 애초에 에너지 보존의 다른 표현이므로 에너지가 가해지면 성립하지 않는다. 외력이 가해지는 대표적인 예로 비행기 날개 부근의 유체가 있다. 수식을 이용하지 않고 간단히 설명하자면 폭이 넓었다 좁아지는 도로에서 실제로 정체가 일어나는 구간은 폭이 좁은 도로가 아닌 폭이 좁아지기 전의 넓은 도로인 것과 같다. 폭이 좁은 도로의 정체된 정도(압력)는 그 전의 넓은 도로보다 훨씬 적다.
요약
문서 편집을
저장
하면 당신은 기여한 내용을
CC BY-NC-SA 2.0 KR
또는
기타 라이선스 (문서에 명시된 경우)
로 배포하고 기여한 문서에 대한 하이퍼링크나 URL을 이용하여 저작자 표시를 하는 것으로 충분하다는 데 동의하는 것입니다. 이
동의는 철회할 수 없습니다.
비로그인 상태로 편집합니다. 로그인하지 않은 상태로 문서 편집을 저장하면, 편집 역사에 본인이 사용하는 IP(216.73.216.107) 주소 전체가 영구히 기록됩니다.
저장
사용자
216.73.216.107
IP 사용자
로그인
회원가입
최근 변경
[불러오는 중...]
최근 토론
[불러오는 중...]